Build regression model from a set of candidate predictor variables by entering and removing predictors based on p values, in a stepwise manner until there is no variable left to enter or remove any more.

stepwise(model, ...)

Arguments

model
an object of class lm
...
other arguments

Value

stepwise returns an object of class "stepwise". An object of class "stepwise" is a list containing the following components:

Examples

# stepwise regression model <- lm(y ~ ., data = surgical) stepwise(model)
#> We are selecting variables based on p value...
#> 1 variable(s) added....
#> 1 variable(s) added...
#> 1 variable(s) added...
#> 1 variable(s) added...
#> 1 variable(s) added...
#> No more variables to be added or removed.
#> Stepwise Selection Method #> #> Candidate Terms: #> #> 1 . bcs #> 2 . pindex #> 3 . enzyme_test #> 4 . liver_test #> 5 . age #> 6 . gender #> 7 . alc_mod #> 8 . alc_heavy #> #> ------------------------------------------------------------------------------------------ #> Stepwise Selection Summary #> ------------------------------------------------------------------------------------------ #> Added/ Adj. #> Step Variable Removed R-Square R-Square C(p) AIC RMSE #> ------------------------------------------------------------------------------------------ #> 1 liver_test addition 0.455 0.444 62.5119 771.8753 296.2992 #> 2 alc_heavy addition 0.567 0.550 41.3681 761.4394 266.6484 #> 3 enzyme_test addition 0.659 0.639 24.3379 750.5089 238.9145 #> 4 pindex addition 0.750 0.730 7.5373 735.7146 206.5835 #> 5 bcs addition 0.781 0.758 3.1925 730.6204 195.4544 #> ------------------------------------------------------------------------------------------
# stepwise regression plot model <- lm(y ~ ., data = surgical) k <- stepwise(model)
#> We are selecting variables based on p value...
#> 1 variable(s) added....
#> 1 variable(s) added...
#> 1 variable(s) added...
#> 1 variable(s) added...
#> 1 variable(s) added...
#> No more variables to be added or removed.
plot(k)