Skip to contents

Evaluate performance of regression models.

Usage

ols_model_performance(model, ...)

Arguments

model

An object of class lm.

...

Other arguments.

Value

ols_model_performance returns an object of class "ols_model_performance". An object of class "ols_regress" is a list containing the following components:

r

square root of rsquare, correlation between observed and predicted values of dependent variable

rsq

coefficient of determination or r-square

adjr

adjusted rsquare

prsq

predicted rsquare

aic

akaike information criteria

sbc

bayesian information criteria

sbic

sawa bayesian information criteria

rmse

root mean squared error

Examples

# model
model <- lm(mpg ~ disp + hp + wt, data = mtcars)

# model performance
ols_model_performance(model)
#>               Model Performance               
#> ---------------------------------------------
#> R                 0.909       AIC     158.643 
#> R-Squared         0.827       SBC     165.972 
#> Adj. R-Squared    0.808       SBIC     68.933 
#> Pred R-Squared    0.768       RMSE      2.468 
#> ---------------------------------------------
#>   AIC: Akaike Information Criteria 
#>   SBC: Schwarz Bayesian Criteria 
#>  SBIC: Sawa's Bayesian Criteria 
#>  RMSE: Root Mean Square Error 
#>