Skip to contents

Ordinary least squares regression.

Usage

ols_regress(object, ...)

# S3 method for class 'lm'
ols_regress(object, ...)

Arguments

object

An object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted or class lm.

...

Other inputs.

Value

ols_regress returns an object of class "ols_regress". An object of class "ols_regress" is a list containing the following components:

r

square root of rsquare, correlation between observed and predicted values of dependent variable

rsq

coefficient of determination or r-square

adjr

adjusted rsquare

rmse

root mean squared error

cv

coefficient of variation

mse

mean squared error

mae

mean absolute error

aic

akaike information criteria

sbc

bayesian information criteria

sbic

sawa bayesian information criteria

prsq

predicted rsquare

error_df

residual degrees of freedom

model_df

regression degrees of freedom

total_df

total degrees of freedom

ess

error sum of squares

rss

regression sum of squares

tss

total sum of squares

rms

regression mean square

ems

error mean square

f

f statistis

p

p-value for f

n

number of predictors including intercept

betas

betas; estimated coefficients

sbetas

standardized betas

std_errors

standard errors

tvalues

t values

pvalues

p-value of tvalues

df

degrees of freedom of betas

conf_lm

confidence intervals for coefficients

title

title for the model

dependent

character vector; name of the dependent variable

predictors

character vector; name of the predictor variables

mvars

character vector; name of the predictor variables including intercept

model

input model for ols_regress

Interaction Terms

If the model includes interaction terms, the standardized betas are computed after scaling and centering the predictors.

References

https://www.ssc.wisc.edu/~hemken/Stataworkshops/stdBeta/Getting%20Standardized%20Coefficients%20Right.pdf

Examples

ols_regress(mpg ~ disp + hp + wt, data = mtcars)
#>                          Model Summary                          
#> ---------------------------------------------------------------
#> R                       0.909       RMSE                 2.468 
#> R-Squared               0.827       MSE                  6.093 
#> Adj. R-Squared          0.808       Coef. Var           13.135 
#> Pred R-Squared          0.768       AIC                158.643 
#> MAE                     1.907       SBC                165.972 
#> ---------------------------------------------------------------
#>  RMSE: Root Mean Square Error 
#>  MSE: Mean Square Error 
#>  MAE: Mean Absolute Error 
#>  AIC: Akaike Information Criteria 
#>  SBC: Schwarz Bayesian Criteria 
#> 
#>                                ANOVA                                 
#> --------------------------------------------------------------------
#>                 Sum of                                              
#>                Squares        DF    Mean Square      F         Sig. 
#> --------------------------------------------------------------------
#> Regression     931.057         3        310.352    44.566    0.0000 
#> Residual       194.991        28          6.964                     
#> Total         1126.047        31                                    
#> --------------------------------------------------------------------
#> 
#>                                   Parameter Estimates                                    
#> ----------------------------------------------------------------------------------------
#>       model      Beta    Std. Error    Std. Beta      t        Sig      lower     upper 
#> ----------------------------------------------------------------------------------------
#> (Intercept)    37.106         2.111                 17.579    0.000    32.782    41.429 
#>        disp    -0.001         0.010       -0.019    -0.091    0.929    -0.022     0.020 
#>          hp    -0.031         0.011       -0.354    -2.724    0.011    -0.055    -0.008 
#>          wt    -3.801         1.066       -0.617    -3.565    0.001    -5.985    -1.617 
#> ----------------------------------------------------------------------------------------

# if model includes interaction terms set iterm to TRUE
ols_regress(mpg ~ disp * wt, data = mtcars, iterm = TRUE)
#>                          Model Summary                          
#> ---------------------------------------------------------------
#> R                       0.922       RMSE                 2.296 
#> R-Squared               0.850       MSE                  5.273 
#> Adj. R-Squared          0.834       Coef. Var           12.219 
#> Pred R-Squared          0.801       AIC                154.018 
#> MAE                     1.897       SBC                161.346 
#> ---------------------------------------------------------------
#>  RMSE: Root Mean Square Error 
#>  MSE: Mean Square Error 
#>  MAE: Mean Absolute Error 
#>  AIC: Akaike Information Criteria 
#>  SBC: Schwarz Bayesian Criteria 
#> 
#>                                ANOVA                                 
#> --------------------------------------------------------------------
#>                 Sum of                                              
#>                Squares        DF    Mean Square      F         Sig. 
#> --------------------------------------------------------------------
#> Regression     957.299         3        319.100    52.947    0.0000 
#> Residual       168.749        28          6.027                     
#> Total         1126.047        31                                    
#> --------------------------------------------------------------------
#> 
#>                                   Parameter Estimates                                    
#> ----------------------------------------------------------------------------------------
#>       model      Beta    Std. Error    Std. Beta      t        Sig      lower     upper 
#> ----------------------------------------------------------------------------------------
#> (Intercept)    44.082         3.123                 14.115    0.000    37.685    50.479 
#>        disp    -0.056         0.013       -0.385    -4.257    0.000    -0.083    -0.029 
#>          wt    -6.496         1.313       -0.616    -4.946    0.000    -9.186    -3.805 
#>     disp:wt     0.012         0.003        0.278     3.596    0.001     0.005     0.018 
#> ----------------------------------------------------------------------------------------