Skip to contents

Fits all regressions involving one regressor, two regressors, three regressors, and so on. It tests all possible subsets of the set of potential independent variables.

Usage

ols_step_all_possible(model, ...)

# Default S3 method
ols_step_all_possible(model, max_order = NULL, ...)

# S3 method for class 'ols_step_all_possible'
plot(x, model = NA, print_plot = TRUE, ...)

Arguments

model

An object of class lm.

...

Other arguments.

max_order

Maximum subset order.

x

An object of class ols_step_all_possible.

print_plot

logical; if TRUE, prints the plot else returns a plot object.

Value

ols_step_all_possible returns an object of class "ols_step_all_possible". An object of class "ols_step_all_possible" is a data frame containing the following components:

mindex

model index

n

number of predictors

predictors

predictors in the model

rsquare

rsquare of the model

adjr

adjusted rsquare of the model

rmse

root mean squared error of the model

predrsq

predicted rsquare of the model

cp

mallow's Cp

aic

akaike information criteria

sbic

sawa bayesian information criteria

sbc

schwarz bayes information criteria

msep

estimated MSE of prediction, assuming multivariate normality

fpe

final prediction error

apc

amemiya prediction criteria

hsp

hocking's Sp

References

Mendenhall William and Sinsich Terry, 2012, A Second Course in Statistics Regression Analysis (7th edition). Prentice Hall

Examples

model <- lm(mpg ~ disp + hp, data = mtcars)
k <- ols_step_all_possible(model)
k
#>   Index N Predictors  R-Square Adj. R-Square Mallow's Cp
#> 1     1 1       disp 0.7183433     0.7089548    4.443792
#> 2     2 1         hp 0.6024373     0.5891853   17.794906
#> 3     3 2    disp hp 0.7482402     0.7308774    3.000000

# plot
plot(k)



# maximum subset
model <- lm(mpg ~ disp + hp + drat + wt + qsec, data = mtcars)
ols_step_all_possible(model, max_order = 3)
#>    Index N     Predictors  R-Square Adj. R-Square Mallow's Cp
#> 4      1 1             wt 0.7528328     0.7445939   14.534575
#> 1      2 1           disp 0.7183433     0.7089548   20.469805
#> 2      3 1             hp 0.6024373     0.5891853   40.415867
#> 3      4 1           drat 0.4639952     0.4461283   64.240140
#> 5      5 1           qsec 0.1752963     0.1478062  113.921823
#> 11     6 2          hp wt 0.8267855     0.8148396    3.808191
#> 15     7 2        wt qsec 0.8264161     0.8144448    3.871747
#> 8      8 2        disp wt 0.7809306     0.7658223   11.699275
#> 13     9 2        drat wt 0.7608970     0.7444071   15.146825
#> 6     10 2        disp hp 0.7482402     0.7308774   17.324909
#> 10    11 2        hp drat 0.7411716     0.7233214   18.541329
#> 7     12 2      disp drat 0.7310094     0.7124583   20.290124
#> 9     13 2      disp qsec 0.7215598     0.7023571   21.916283
#> 12    14 2        hp qsec 0.6368769     0.6118339   36.489228
#> 14    15 2      drat qsec 0.5921951     0.5640706   44.178433
#> 25    16 3   drat wt qsec 0.8370214     0.8195594    4.046701
#> 22    17 3     hp drat wt 0.8368791     0.8194018    4.071201
#> 24    18 3     hp wt qsec 0.8347678     0.8170643    4.434529
#> 17    19 3     disp hp wt 0.8268361     0.8082829    5.799467
#> 21    20 3   disp wt qsec 0.8264170     0.8078189    5.871590
#> 19    21 3   disp drat wt 0.7835315     0.7603385   13.251685
#> 16    22 3   disp hp drat 0.7750131     0.7509073   14.717610
#> 18    23 3   disp hp qsec 0.7541953     0.7278591   18.300105
#> 23    24 3   hp drat qsec 0.7442512     0.7168495   20.011366
#> 20    25 3 disp drat qsec 0.7412673     0.7135459   20.524864