Stepwise Adjusted R-Squared backward regression
Source:R/ols-stepaic-backward-regression.R
ols_step_backward_adj_r2.Rd
Build regression model from a set of candidate predictor variables by removing predictors based on adjusted r-squared, in a stepwise manner until there is no variable left to remove any more.
Usage
ols_step_backward_adj_r2(model, ...)
# S3 method for default
ols_step_backward_adj_r2(
model,
include = NULL,
exclude = NULL,
progress = FALSE,
details = FALSE,
...
)
# S3 method for ols_step_backward_adj_r2
plot(x, print_plot = TRUE, details = TRUE, digits = 3, ...)
Arguments
- model
An object of class
lm
; the model should include all candidate predictor variables.- ...
Other arguments.
- include
Character or numeric vector; variables to be included in selection process.
- exclude
Character or numeric vector; variables to be excluded from selection process.
- progress
Logical; if
TRUE
, will display variable selection progress.- details
Logical; if
TRUE
, will print the regression result at each step.- x
An object of class
ols_step_backward_*
.- print_plot
logical; if
TRUE
, prints the plot else returns a plot object.- digits
Number of decimal places to display.
Value
List containing the following components:
- model
final model; an object of class
lm
- metrics
selection metrics
- others
list; info used for plotting and printing
References
Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.
See also
Other backward selection procedures:
ols_step_backward_aic()
,
ols_step_backward_p()
,
ols_step_backward_r2()
,
ols_step_backward_sbc()
,
ols_step_backward_sbic()
Examples
# stepwise backward regression
model <- lm(y ~ ., data = surgical)
ols_step_backward_adj_r2(model)
#>
#>
#> Stepwise Summary
#> -------------------------------------------------------------------------
#> Step Variable AIC SBC SBIC R2 Adj. R2
#> -------------------------------------------------------------------------
#> 0 Full Model 736.390 756.280 586.665 0.78184 0.74305
#> 1 alc_mod 734.407 752.308 583.884 0.78177 0.74856
#> 2 gender 732.494 748.406 581.290 0.78142 0.75351
#> 3 age 730.620 744.543 578.844 0.78091 0.75808
#> -------------------------------------------------------------------------
#>
#> Final Model Output
#> ------------------
#>
#> Model Summary
#> -------------------------------------------------------------------
#> R 0.884 RMSE 184.276
#> R-Squared 0.781 MSE 38202.426
#> Adj. R-Squared 0.758 Coef. Var 27.839
#> Pred R-Squared 0.700 AIC 730.620
#> MAE 137.656 SBC 744.543
#> -------------------------------------------------------------------
#> RMSE: Root Mean Square Error
#> MSE: Mean Square Error
#> MAE: Mean Absolute Error
#> AIC: Akaike Information Criteria
#> SBC: Schwarz Bayesian Criteria
#>
#> ANOVA
#> -----------------------------------------------------------------------
#> Sum of
#> Squares DF Mean Square F Sig.
#> -----------------------------------------------------------------------
#> Regression 6535804.090 5 1307160.818 34.217 0.0000
#> Residual 1833716.447 48 38202.426
#> Total 8369520.537 53
#> -----------------------------------------------------------------------
#>
#> Parameter Estimates
#> ------------------------------------------------------------------------------------------------
#> model Beta Std. Error Std. Beta t Sig lower upper
#> ------------------------------------------------------------------------------------------------
#> (Intercept) -1178.330 208.682 -5.647 0.000 -1597.914 -758.746
#> bcs 59.864 23.060 0.241 2.596 0.012 13.498 106.230
#> pindex 8.924 1.808 0.380 4.935 0.000 5.288 12.559
#> enzyme_test 9.748 1.656 0.521 5.887 0.000 6.419 13.077
#> liver_test 58.064 40.144 0.156 1.446 0.155 -22.652 138.779
#> alc_heavy 317.848 71.634 0.314 4.437 0.000 173.818 461.878
#> ------------------------------------------------------------------------------------------------
#>
# final model and selection metrics
k <- ols_step_backward_aic(model)
k$metrics
#> step variable r2 adj_r2 aic sbc sbic
#> 1 1 alc_mod 0.7817703 0.7485615 734.4068 752.3077 583.8836
#> 2 2 gender 0.7814169 0.7535127 732.4942 748.4061 581.2896
#> 3 3 age 0.7809054 0.7580831 730.6204 744.5433 578.8438
k$model
#>
#> Call:
#> lm(formula = paste(response, "~", paste(preds, collapse = " + ")),
#> data = l)
#>
#> Coefficients:
#> (Intercept) bcs pindex enzyme_test liver_test alc_heavy
#> -1178.330 59.864 8.924 9.748 58.064 317.848
#>
# include or exclude variable
# force variables to be included in the selection process
ols_step_backward_adj_r2(model, include = c("alc_mod", "gender"))
#>
#>
#> Stepwise Summary
#> -------------------------------------------------------------------------
#> Step Variable AIC SBC SBIC R2 Adj. R2
#> -------------------------------------------------------------------------
#> 0 Full Model 736.390 756.280 586.665 0.78184 0.74305
#> 1 age 734.544 752.445 584.021 0.78121 0.74792
#> -------------------------------------------------------------------------
#>
#> Final Model Output
#> ------------------
#>
#> Model Summary
#> -------------------------------------------------------------------
#> R 0.884 RMSE 184.147
#> R-Squared 0.781 MSE 39807.322
#> Adj. R-Squared 0.748 Coef. Var 28.418
#> Pred R-Squared 0.678 AIC 734.544
#> MAE 136.858 SBC 752.445
#> -------------------------------------------------------------------
#> RMSE: Root Mean Square Error
#> MSE: Mean Square Error
#> MAE: Mean Absolute Error
#> AIC: Akaike Information Criteria
#> SBC: Schwarz Bayesian Criteria
#>
#> ANOVA
#> -----------------------------------------------------------------------
#> Sum of
#> Squares DF Mean Square F Sig.
#> -----------------------------------------------------------------------
#> Regression 6538383.716 7 934054.817 23.464 0.0000
#> Residual 1831136.821 46 39807.322
#> Total 8369520.537 53
#> -----------------------------------------------------------------------
#>
#> Parameter Estimates
#> ------------------------------------------------------------------------------------------------
#> model Beta Std. Error Std. Beta t Sig lower upper
#> ------------------------------------------------------------------------------------------------
#> (Intercept) -1185.902 217.138 -5.462 0.000 -1622.977 -748.826
#> bcs 60.545 23.696 0.244 2.555 0.014 12.847 108.242
#> pindex 8.922 1.851 0.379 4.820 0.000 5.196 12.647
#> enzyme_test 9.767 1.692 0.522 5.771 0.000 6.360 13.174
#> liver_test 55.301 42.441 0.149 1.303 0.199 -30.129 140.730
#> gender 14.057 57.701 0.018 0.244 0.809 -102.089 130.203
#> alc_mod 4.737 63.812 0.006 0.074 0.941 -123.711 133.184
#> alc_heavy 322.249 84.152 0.318 3.829 0.000 152.859 491.638
#> ------------------------------------------------------------------------------------------------
#>
# use index of variable instead of name
ols_step_backward_adj_r2(model, include = c(7, 6))
#>
#>
#> Stepwise Summary
#> -------------------------------------------------------------------------
#> Step Variable AIC SBC SBIC R2 Adj. R2
#> -------------------------------------------------------------------------
#> 0 Full Model 736.390 756.280 586.665 0.78184 0.74305
#> 1 age 734.544 752.445 584.021 0.78121 0.74792
#> -------------------------------------------------------------------------
#>
#> Final Model Output
#> ------------------
#>
#> Model Summary
#> -------------------------------------------------------------------
#> R 0.884 RMSE 184.147
#> R-Squared 0.781 MSE 39807.322
#> Adj. R-Squared 0.748 Coef. Var 28.418
#> Pred R-Squared 0.678 AIC 734.544
#> MAE 136.858 SBC 752.445
#> -------------------------------------------------------------------
#> RMSE: Root Mean Square Error
#> MSE: Mean Square Error
#> MAE: Mean Absolute Error
#> AIC: Akaike Information Criteria
#> SBC: Schwarz Bayesian Criteria
#>
#> ANOVA
#> -----------------------------------------------------------------------
#> Sum of
#> Squares DF Mean Square F Sig.
#> -----------------------------------------------------------------------
#> Regression 6538383.716 7 934054.817 23.464 0.0000
#> Residual 1831136.821 46 39807.322
#> Total 8369520.537 53
#> -----------------------------------------------------------------------
#>
#> Parameter Estimates
#> ------------------------------------------------------------------------------------------------
#> model Beta Std. Error Std. Beta t Sig lower upper
#> ------------------------------------------------------------------------------------------------
#> (Intercept) -1185.902 217.138 -5.462 0.000 -1622.977 -748.826
#> bcs 60.545 23.696 0.244 2.555 0.014 12.847 108.242
#> pindex 8.922 1.851 0.379 4.820 0.000 5.196 12.647
#> enzyme_test 9.767 1.692 0.522 5.771 0.000 6.360 13.174
#> liver_test 55.301 42.441 0.149 1.303 0.199 -30.129 140.730
#> gender 14.057 57.701 0.018 0.244 0.809 -102.089 130.203
#> alc_mod 4.737 63.812 0.006 0.074 0.941 -123.711 133.184
#> alc_heavy 322.249 84.152 0.318 3.829 0.000 152.859 491.638
#> ------------------------------------------------------------------------------------------------
#>
# force variable to be excluded from selection process
ols_step_backward_adj_r2(model, exclude = c("alc_heavy", "bcs"))
#> [1] "No variables have been removed from the model."
# use index of variable instead of name
ols_step_backward_adj_r2(model, exclude = c(8, 1))
#> [1] "No variables have been removed from the model."