Stepwise Adjusted R-Squared regression
Source:R/ols-stepaic-both-regression.R
ols_step_both_adj_r2.Rd
Build regression model from a set of candidate predictor variables by entering and removing predictors based on adjusted r-squared, in a stepwise manner until there is no variable left to enter or remove any more.
Usage
ols_step_both_adj_r2(model, ...)
# Default S3 method
ols_step_both_adj_r2(
model,
include = NULL,
exclude = NULL,
progress = FALSE,
details = FALSE,
...
)
# S3 method for class 'ols_step_both_adj_r2'
plot(x, print_plot = TRUE, details = TRUE, digits = 3, ...)
Arguments
- model
An object of class
lm
.- ...
Other arguments.
- include
Character or numeric vector; variables to be included in selection process.
- exclude
Character or numeric vector; variables to be excluded from selection process.
- progress
Logical; if
TRUE
, will display variable selection progress.- details
Logical; if
TRUE
, details of variable selection will be printed on screen.- x
An object of class
ols_step_both_*
.- print_plot
logical; if
TRUE
, prints the plot else returns a plot object.- digits
Number of decimal places to display.
Value
List containing the following components:
- model
final model; an object of class
lm
- metrics
selection metrics
- others
list; info used for plotting and printing
References
Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.
See also
Other both direction selection procedures:
ols_step_both_aic()
,
ols_step_both_r2()
,
ols_step_both_sbc()
,
ols_step_both_sbic()
Examples
if (FALSE) { # \dontrun{
# stepwise regression
model <- lm(y ~ ., data = stepdata)
ols_step_both_adj_r2(model)
# stepwise regression plot
model <- lm(y ~ ., data = stepdata)
k <- ols_step_both_adj_r2(model)
plot(k)
# selection metrics
k$metrics
# final model
k$model
# include or exclude variables
# force variable to be included in selection process
model <- lm(y ~ ., data = stepdata)
ols_step_both_adj_r2(model, include = c("x6"))
# use index of variable instead of name
ols_step_both_adj_r2(model, include = c(6))
# force variable to be excluded from selection process
ols_step_both_adj_r2(model, exclude = c("x2"))
# use index of variable instead of name
ols_step_both_adj_r2(model, exclude = c(2))
# include & exclude variables in the selection process
ols_step_both_adj_r2(model, include = c("x6"), exclude = c("x2"))
# use index of variable instead of name
ols_step_both_adj_r2(model, include = c(6), exclude = c(2))
} # }