Test for heteroskedasticity under the assumption that the errors are independent and identically distributed (i.i.d.).
Arguments
- model
An object of class
lm
.- fitted_values
Logical; if TRUE, use fitted values of regression model.
- rhs
Logical; if TRUE, specifies that tests for heteroskedasticity be performed for the right-hand-side (explanatory) variables of the fitted regression model.
- vars
Variables to be used for for heteroskedasticity test.
- ...
Other arguments.
Value
ols_test_f
returns an object of class "ols_test_f"
.
An object of class "ols_test_f"
is a list containing the
following components:
- f
f statistic
- p
p-value of
f
- fv
fitted values of the regression model
- rhs
names of explanatory variables of fitted regression model
- numdf
numerator degrees of freedom
- dendf
denominator degrees of freedom
- vars
variables to be used for heteroskedasticity test
- resp
response variable
- preds
predictors
References
Wooldridge, J. M. 2013. Introductory Econometrics: A Modern Approach. 5th ed. Mason, OH: South-Western.
See also
Other heteroskedasticity tests:
ols_test_bartlett()
,
ols_test_breusch_pagan()
,
ols_test_score()
Examples
# model
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
# using fitted values
ols_test_f(model)
#>
#> F Test for Heteroskedasticity
#> -----------------------------
#> Ho: Variance is homogenous
#> Ha: Variance is not homogenous
#>
#> Variables: fitted values of mpg
#>
#> Test Summary
#> -------------------------
#> Num DF = 1
#> Den DF = 30
#> F = 0.4920617
#> Prob > F = 0.4884154
# using all predictors of the model
ols_test_f(model, rhs = TRUE)
#>
#> F Test for Heteroskedasticity
#> -----------------------------
#> Ho: Variance is homogenous
#> Ha: Variance is not homogenous
#>
#> Variables: disp hp wt qsec
#>
#> Test Summary
#> -------------------------
#> Num DF = 4
#> Den DF = 27
#> F = 0.4594694
#> Prob > F = 0.7647271
# using fitted values
ols_test_f(model, vars = c('disp', 'hp'))
#>
#> F Test for Heteroskedasticity
#> -----------------------------
#> Ho: Variance is homogenous
#> Ha: Variance is not homogenous
#>
#> Variables: disp hp
#>
#> Test Summary
#> -------------------------
#> Num DF = 2
#> Den DF = 29
#> F = 0.4669306
#> Prob > F = 0.631555